WSPR

Andy Cornwall, VE1COR

acornwallns@gmail.com

web: acornwall.ca

April 2019

Update to RTL-SDR section January, 2020 and February 15, 2021

Note: WSPR is explained in many Internet sites and there is an excellent WSPR User Guide in the WSJT-X documentation.

1. INTODUCTION TO WSPR

(pronounced Whisper)

- WSPR stands for <u>Weak-Signal-Propagation-Reporter</u>.
- WSPR is a digital Amateur Radio mode to measure radio propagation of ham radio signals.
- WSPR is one of Joe Taylor's WSJT-X open source suit of modes that include:

FT8, JT4, JT9, JT65, QRA64, ISCAT, WSPR, Echo

These modes enable digital radio communications having low signal to noise characteristics (low transmission power and long distances) by using a combination of specialized encoding and error correction.

1. INTODUCTION TO WSPR - Continued

- WSPR transmission uses ... "a compressed data format with strong forward error correction (FEC) and narrow band, fourtone frequency-shift-keying ... The FEC greatly improves chances of copy and reduces errors to an extremely low rate." Taylor and Walker, "WSPRIN Around the world", QST November 2010, pp:30-32
- Microcomputer versions of WSJT-X PC, MacIntosh, and Linux can be downloaded from http://www.physics.princeton.edu/pulsar/K1JT/
- WSPR is available on nearly all ham bands

2: THERE ARE THREE PRIMARY ENTITIES INVOLVED WITH WSPR

- i) WSPR signal transmitters, hams worldwide who want to see where their signals can be heard to judge the capabilities of their rigs and assess propagation conditions.
- ii) WSPR signal monitors, hams and radio listeners (e.g. shortwave listeners) worldwide who receive signals and report them in real time over the Internet to the central repository.
- iii) <u>WSPRnet</u> is the Internet real time collector and displayer of monitored WSPR transmissions. The URL is <u>WSPRnet.org</u>.

3. COMPARISON OF MAJOR INTERNET - BASED AMATEUR RADIO SIGNAL REPORTERS. WHERE DOES WSPR FIT IN?

	REVERSE BEACON NETWORK	PSK REPORTER	WSPR
Primary Purpose	Spot Current DX Targets and Advertise Your Availability (e.g. contests, awards), Collect and Analyze Data on Station Global Reception. Useful for Station Transmission Testing.	and Analyze DX	Identify Propagation Paths with Low- power Transmissions Ideal for Testing Antenna Receiving and Sending DOES NOT SPOT CONTACTS

	REVERSE BEACON NETWORK	PSK REPORTER	WSPR
Modes	Reception of "CQ or TEST": With CW, RTTY, PSKXX picked up by skimmer stations, also as many as 18 Beacons Stations Worldwide (coordinated on 5 HF bands by the International Amateur Radio Union - Canada's beacon is at Eureka, Nunavut)	Reception of "CQ" or a Station Making Contact with A Monitor in Many Modes. Recently Including: FT8, CW, JS8, PSKxxx,JT65, MSK144, SIM31, ROS, RTTY, OPERA, JT9, OLIVIA-x, PI4, MFSK, HELL	Beacon Using Prescribed Format
Frequency Selection	Normal Band Plan Usage	Normal Band Plan Usage	Very Specific Frequencies in Each Band
Transmitter Power	Usual for the Mode	Usual for the Mode	A few mW to 5 W (Higher possible but not common)

	REVERSE BEACON NETWORK	PSK REPORTER	WSPR
Monitoring Software	CW, RTTY, PSKXX Skimmers, and Unique PC Run Aggregator Program to Report to the Internet	Reporting Capability Built Into as Many as 34 Amateur Radio CW and Digital Programs, Such as: CW reporter, CW Skimmer, Digital Master 780, fldigi, JS8Call, JT65-HF, JTDX, MSHV, Multipsk, Opera, PI-RX, Red Pitaya FT, Reporter for MixW 40, ROS, SIM, UR5EQF log, WSJT-X (excluding WSPR?)	Part of WSJT-X Suite: Open Source WSPR program for PC, Mac, and Linux; also built into WSPR transmitting devices

	REVERSE BEACON NETWORK	PSK REPORTER	WSPR
Information Provided (Depending on Where Displayed)	Call Signs (continent and country) of transmitters and skimers, Time-Date of Reception, Frequency / Band, S/N Ratio, Mode, CW, PSKXX, or RTTY, Mode Speed	Call Signs and Maidenhead Locators of Monitor (and Sender - maybe country), Time- Date of Occurrence, Frequency, Received S/N, Monitor Program, Monitor - Antenna, there may be more	Call Signs and Maidenhead Locators of Sender and Monitor, Distance, Direction, Time-Date of the 'Spot', as well as Frequency, Transmitted Power, Received S/N
On-Line Display Options	Map, Current and Historical Tables of spots	Map, Current and Historical Tables of spots	Map, Current and Historical Tables of spots

	REVERSE BEACON NETWORK	PSK REPORTER	WSPR
Active Monitoring Stations	As Many as ~180 Active "skimmer" Stations	As Many as ~4,500 per Hour	Approx. 1,300
Number of Reports	Nov. 24-25, 2018 (contest weekend) - Total ~8,400,000 - Unique Call Signs ~36,000	Daily Feb. 2018 (weekday, includes repeats) - Receptions ~840,000 - Unique Transmitters ~7,400	Daily Feb. 2018 (weekday, includes repeats) - Receptions ~1,400,000 - Peak per Hr. ~54,000 - Unique Callsigns (Transmitters) Heard per Day ~1,600
Four Most Reported Modes	- CW almost all- A Few PSKXX- Even fewer RTTY	Two Hr. Sample: FT8 ~99.3% CW ~0.3% JS8 ~0.2 PSK63 ~0.1%	WSPR 100%

4. OVERVIEW OF THE WSPR SIGNAL

Normal Packet Content

- * Transmission Information Data Encoding 50 bits
 - . up to 6 digit call sign; no prefix nor suffix (28 bits)
 - . first 4 digits of maidenhead geolocator (15 bits)
 - . power output in dB, reference 1 mW (7 bits)
- * FEC Encoding 112 bits

OVERVIEW OF THE WSPR SIGNAL - Continued

With some implementations there is provision for longer call sign and maidenhead in an extended format, but this requires sending two packets.

- Recommended Type 1 is NORMAL and 1 packet is sent
- Types 2 and 3 have longer than 6 Characters for either callsign or Maidenhead, or both, and require two packets

There is a WSPR-15 variant which transmits in 15 minute intervals (not two minutes) that is intended for very low frequencies such as 136 kHz

OVERVIEW OF THE WSPR SIGNAL - Continued

Signal Paramters

- . SSB, four tone FSK
- . Occupied bandwidth is about **6 Hz** within a 200 Hz dedicated WSPR segment in each band (there are slots for many WSPR signals within the 200 Hz segment; a receiver can decode more than one WSPR signal at a time)
- . Baud Rate is 1.4648 transitions per second
- . Duration of transmission is 110.6 seconds

OVERVIEW OF THE WSPR SIGNAL - Continued

- . Transmissions start at an <u>even</u> minute
- . Minimum S/N for reception is –31 dB on the WSJT scale (2500 Hz reference bandwidth).

WSPR Etiquette:

- transmission on a band is suggested to occur <u>no more</u> than ~20% of even minute opportunities, e.g. once every ten minutes. This is often relaxed, especially for very weak signals, and there appears to be no consequences.

System Requirements:

- accurate knowledge of the time either continually via the Internet or in conjunction with a very stable system clock once started on-time
- very stable receiver/transmitter frequency

5: Using the WSPRnet.org Map

Sign-in Default (all callsigns, previous 10 minutes, 30 metres, 1,000 spots)

Highlighting Individual Callsigns on the Map (all callsigns, previous 10 minutes, 30 metres, 1,000 spots. VE1COR Receiving, and Transmitting 1 Watt)

Filters - under the map

Map Filtered for VE1COR (1 watt, previous 10 minutes, 30 metres)

Map Filtered for VE1COR (1 watt, previous 10 hours, 30 metres)

- Continued Map Filtered for VE1COR (1 watt, previous 10 hours, 30 metres)

Alternative WSPR.org MAP (Link at bottom of filter screen)

Showing WSPRnet.org Data

Data Filtered for VE1COR (1 watt, previous 10 hours, 30 metres)

Showing WSPRnet.org Data - Continued

Data Query Filters

6: Using WSPR Program on a PC, MAC, Linux Active Screen (waterfall not optimized)

6: Using WSPR on a PC, MAC, Linux

General Setup Screen (located in File menu)

Using WSPR on a PC, MAC, Linux - Continued Settings - Audio (for SignaLink)

Using WSPR on a PC, MAC, Linux - Continued Radio Type (optional except for CAT control with Frequency Hopping)

Using WSPR on a PC, MAC, Linux - Continued Frequency Hopping (for radio with CAT, accessed on Active Screen: check 'Band Hopping' and click on 'Schedule')

7: Three Specialized WSPR <u>Transmitting</u> Devices - with portable capability

1. TAPR 20m Raspberry Pi Shield

- Available from TAPR (Tucson Amateur Packet Radio Corp.) for \$29US plus shipping
- Plugs onto the bus of a Raspberry Pi models 2*, 3B, or 3B+ (* for Internet needs a USB WiFi dongle or ethernet connection)

TAPR 20m Raspberry Pi Shield - Continued

- 20 metre band WSPR <u>transmitter</u> with integrated low pass filter (source signal is a square wave)
- Transmission output 100 milliwatts (0.1 Watts)
- Automatic frequency adjustment when Network Time Protocol (NTP) server is available via the Internet (WiFi, ethernet)
- Portable capability based on the accuracy of the Raspberry Pi clock.
- Requires 5 volt 1.5 amp or greater power supply
- The way I command the TAPR 20m Shield it transmits every 2 minutes, not conforming to WSPR etiquette (there may be a command line option that delays transmitting)

TAPR 20m Raspberry Pi Shield - Continued TAPR 20m Shield Operating on a Raspberry Pi

TAPR 20m Raspberry Pi Shield - Continued

TAPR 20m Shield WSPR Map (testing autotuned small magnetic loop antenna, 9 Hrs. July 2-3 2018 - 0.1 Watt)

Map produced before Google's deterioration.

2. QRP Labs Ultimate3S QRSS/WSPR kit

- The base module and add-on options are kits
- Main module, synthesizer, one low pass filter: price \$33.00US plus shipping
- Options needed for full WSPR operation: QLG1 GPS receiver (\$23US) 6-band Filter Relay switch (\$16US), Low Pass Filters (\$4.50US per band)

QRP Labs Ultimate3S QRSS/WSPR kit - Continued

- U3S enclosure (+\$38.50US)
- Several other beacon modes are also supported, may need additional options
- Maximum transmission power approximately 200 mA
- Time and location information provided automatically by GPS
- Operates without external computer connection at any time
- Set up for callsign, frequency, power output, etc. is entered by two push button switches
- Requires 5 volt power supply while operating

QRP Labs Ultimate3S QRSS/WSPR kit - Continued

- Here is what happened when, by mistake, I connected a 12 volt power supply to the Ultimate3s during testing ...

GOODBYE Ultimate3S QRSS/WSPR kit

3.

SOTABEAMS WSPRLite Flexi Antenna Performance Analysis System

It is small: 40 x 50 x 10 mm

- Price \$107.98 CDN
- Low Pass Filters needed for each band (output is raw square wave), \$18.12 for PCB, plus \$7.60 per band (note, any suitable low pass filter selection can be used)

SOTABEAMS WSPRLite Flexi Antenna Performance Analysis System

- Continued
- Maximum transmission power 200 mW (100 mW on 6 metres)
- Covers 630 metres to 6 metres
- Computer or tablet is used to program callsign, maidenhead location, band (freq.), repeat rate. After being programmed WSPRlite may be discontented and settings are retained
- "Inerference Avoidance Algorithm"
- Requires 5 volt power supply while operating
- Timing set by pressing a button on the device at the beginning of an even two-minute segment. Once set timing is supposed to be accurate for 45 days or as long as power is maintained

SOTABEAMS WSPRLite Flexi Antenna Performance Analysis System - Continued

Programming WSPRlite Flexi with a PC running 'WSPRLiteConfig' Utility

SOTABEAMS WSPRLite Flexi Antenna Performance Analysis System - Continued

WSPRLite Flexi Map 1 (Transmitting Only: 0.2 watts - effective 0.1 watt with transmission line loss - previous 6 hours, 20 metres. Hustler 6BTV Antenna)

8: Dedicated WSPR Monitor / Receiver Using a Raspberry Pi 3 (or later) and a RTL-SDR, Software Defined Radio, Dongle Receiver

- Here are the parts:

Raspberry Pi 3 or later

RTL-SDR V3 Monitor, Mouse, R820T2 RTL2832U Keyboard

HF Antenna

Others: Pi 5V power supply, Pi case, various cable connectors

- The RTL-SDR V3 has a frequency range of about 500KHz to 28MHz in this mode.

8: Dedicated WSPR Monitor / Receiver Using a Raspberry Pi 3 . . . continued The results (a few minutes list for the Pi, 10 minutes for the Map)

```
File Edit Tabs Help
pi@raspberrypi:~ $ bash wspr
Found 1 device(s):
 0: Realtek, RTL2838UHIDIR, SN: 00000001
Using device 0: Generic RTL2832U OEM
Found Rafael Micro R820T tuner
Enabled direct sampling mode, input 2
Starting rtlsdr-wsprd (2019-07-24, 14:47z) -- Version 0.2
 Callsign
              : VE1COR
 Locator
               : FN84FX
 Dial freq.
              : 14095599 Hz
              : 14095599 Hz
  Real freq.
  PPM factor
              : enable
 Auto gain
lait for time sync (start in 18 sec)
Allocating 15 zero-copy buffers
     : -8.80 -0.27 14.097165 -4 NF10 FN33 20
             -0.91 14.097031 1 KB8EZX EN91 37
                    14.097040
                    14.097174 0
       -17.07 -1.81 14.097058 0
       -18.77 -0.85 14.097147 0
                                  GOCCL J002 37
      -3.59 -0.91 14.097122 0 VE3PRO EN94 33
      -12.09 -0.87 14.096998 0 KD1XH FN31 37
       -17.39 -0.95 14.097078 0
                    14.097160
                    14.097147 0 GOCCL J002 37
       -22.83 -0.95 14.097099 1 AC3V FN11 20
       -1.26 -0.87 14.096998 0 KD1XH FN31 37
                    14.097182 0
                                  K4COD EM73 33
      -12.79 0.79 14.097121 1 VE3SAO EN58 23
      -15.18 -0.89 14.097060 0 KC2RFU FN32 20
                    14.097159
                                  KD9ISN EN41 23
```


This is what shows when the RTL-SDR / Raspberry Pi WSPR Monitor is run successfully

8: Dedicated WSPR Monitor / Receiver Using a Raspberry Pi 3 . . . Software

- Raspberry Pi standard operating system: Raspbian Stretch

NOTE: In mid-2020 I successfully installed RTL-SDR WSPR in a Raspberry Pi 3 using the latest version of Raspbain, called 'Buster'. Raspbain is Raspberry Pi's standard operating system, which has newer versions from time-to-time. In January 2021 the then latest modification of Buster did not support RTL-SDR WSPR. However, a subsequent install in a Raspberry Pi 4 running an even newer update of Buster is working well.

<u>Installation steps provided by Zoltan.</u> Copy commands below and paste them into the Terminal to run. (Note, I ignore step 3 - my monitor is VGA with an HDMI to VGA converter, also I have not used tmux.)

Terminal procedure for setting up RTL-SDR WSPR Monitor in a Raspberry Pi, by Zoltan at www.rfsparkling.com (also youTube)

Copied from: http://rfsparkling.com/blog/2018/12/21/making-a-standalone-wspr-receiver-using-raspberry-pi-and-rtl-sdr-v3-dongle-with-rtlsdr-wsprd-software/

- # 1. Install necessary dependencies
- # -> installing tmux is optional, needed for having multiple terminals (optional but recommended even for standalone operation without SSH terminal)

sudo apt-get install build-essential cmake libfftw3-dev curl libcurl4-gnutls-dev ntp libusb-1.0-0-dev librtlsdr-dev git tmux

#2. Cloning the rtlsdr-wsprd repository and building it

git clone https://github.com/Guenael/rtlsdr-wsprd
cd rtlsdr-wsprd/
sudo make

#3. Turning off HDMI for less local EMI (I don't do this because I want to see RTL-SDR WSPR in action.)

/opt/vc/bin/tvservice -o

#4. A reboot is required here to make the rtl-sdr dongle function; the reboot command is:

sudo reboot

Or simply turn OFF the Raspberry Pi, then turn it back on.

8: Dedicated WSPR Monitor / Receiver Using a Raspberry Pi3 RUNNING WSPR MONITOR

WSPR is run in the terminal. The command line structure is

Use: rtlsdr_wsprd -f frequency -c callsign -l locator [options]

- -f dial frequency [(,k,M) Hz], check http://wsprnet.org/ for freq.
- -c your callsign (12 chars max)
- -l your maidenhead locator grid (6 chars max)

Receiver extra options:

- -g gain [0-49] (default: 29)
- -a auto gain (default: off)
- -o frequency offset (default: 0)
- -p crystal correction factor (ppm) (default: 0)
- -u upconverter (default: 0, example: 125M)
- -d direct sampling [0,1,2] (default: 0, 1 for I input, 2 for Q input)

Decoder extra options:

- -H do not use (or update) the hash table
- -Q quick mode, doesn't dig deep for weak signals
- -S single pass mode, no subtraction (same as original wsprd)

8: Dedicated WSPR Monitor / Receiver Using a Raspberry Pi3 RUNNING WSPR MONITOR - continued

It is simpler than it looks . . .

Assume: call sign is VA9000

maidenhead Locator Grid is FN11XY

WSPR receive frequency is for 40 metres

In the default terminal directory (pi@raspberrypi:~ \$) enter:

```
first cd ~/rtlsdr-wsprd then ./rtlsdr_wsprd -f 7.038600M -c VA9OOO -l FN11XY -a 1 -d 2 -p 0 -S
```

Commands may be run from a 'Bash' terminal command, with a new file for each frequency. Example for 40 metres below (enter your call sign and maidenhead):

Bash file stored in /home/pi with the name: wspr40.sh

```
#! /bin/sh cd ~/rtlsdr-wsprd ./rtlsdr_wsprd -f 7.038600M -c VA9OOO -l FN11XY -a 1 -d 2 -p 0 -S
```

In the default terminal directory run this command:

bash wspr40.sh

GOOD LUCK AND HAVE FUN WITH WSPR!